Visualization Design and Redesign

Maneesh Agrawala

CS 448B: Visualization Winter 2020

1

Last Time:
 Dafa and Image Models

The big picture

task

questions, goals, assumptions
data
physical type
int, float, etc.
abstract type
nominal, ordinal, etc.

domain

metadata
semantics
conceptual model
conventions \qquad

3

Nominal, ordinal and quantitative

On the theory of scales of measurements
S. S. Stevens, 1946

N - Nominal (labels)

Fruits: Apples, oranges, ...
Operations: =, \#

O - Ordered

Quality of meat: Grade A, AA, AAA
Operations: =, \#, <, >
Q - Interval (location of zero arbitrary)
Dates: Jan, 19, 2016; Loc.: (LAT 33.98, LON -118.45)
Like a geometric point. Cannot compare directly
Only differences (i.e. intervals) may be compared
Operations: =, \#, <, >>, -
Q - Ratio (location of zero fixed)
Physical measurement: Length, Mass, Temp, ..
Counts and amounts
Like a geometric vector, origin is meaningful
Operations: $=, \neq,<,>,-, \div$

Marks and Visual Variables

5

Bertins' "Levels of Organization"

Position	N	\bigcirc	Q	N Nominal O Ordered
Size	N	\bigcirc	Q	Q Quantitative
Value	N	\bigcirc	Q	Note: $\mathbf{Q}<\mathbf{O}<\mathbf{N}$
Texłure	N	\bigcirc		
Color	N			
Orientation	N			
Shape	N			

Aułomated design

Jock Mackinlay's APT 86

8

Principles

Challenge:
Assume 8 visual encodings and n data fields
Pick the best encoding from the exponential number of possibilities $(\mathrm{n}+1)^{8}$

Principle of Consistency:

The properties of the image (visual variables) should match the properties of the data

Principle of Importance Ordering:

Encode the most important information in the most effective way

Mackinlay's expressiveness criteria

Expressiveness

A set of facts is expressible in a visual language if the sentences (i.e. the visualizations) in the language express all the facts in the set of data, and only the facts in the data.

Cannot express the facts

A one-fo-many ($1 \rightarrow \mathbf{N}$) relation cannot be expressed in a single horizontal dot plot because multiple tuples are mapped to the same position

Expresses facts not in the data

A length is interpreted as a quantitative value;
\therefore Length of bar says something untrue about \mathbf{N} data

Fig. 11. Incorrect use of a bar chart for the Nation relation. The lengths of the bars suggest an ordering on the vertical axis, as if the USA cars were longer or better than the other cars, which is not true for the Nation relation.

Mackinlay's effectiveness criteria

Effectiveness

A visualization is more effective than another visualization if the information conveyed by one visualization is more readily perceived than the information in the other visualization.

Subject of perception lecture

Mackinlay's ranking

Conjectured effectiveness of the encoding

Mackinlay's Design Algorithm

User formally specifies data model and type Input: list of data variables ordered by importance

APT searches over design space
Tests expressiveness of each visual encoding (rule-based)
Generates encodings that pass test
Rank by percepłual effectiveness criteria
Outputs most effective visualization

Automatic chart construction

Encode most important data using highest ranking visual variable for the data type

Year	Exports	Imports	1. Year (Q) 1700	170,000		
300,000						
1701	171,000	302,000				
1702	176,000	303,000			\quad	2. Exports (Q)
:---						
3. Imports (Q)						

Automating the design of graphical presentation of relational information J. Mackinlay, 1986

mark: lines
Year \rightarrow x-pos (Q)
\rightarrow Exports \rightarrow y-pos (Q)
Imports \rightarrow y-pos (Q)

Cars Data

1. Price (Q)
2. Mileage (Q)
3. Weight (Q)
4. Repair (O)

Quantitative
Position
Length
Angle
Slope
Area
Volume
Density
Saturation
Hue
Texture
Connection
Containment
Shape

[Mackinlay, APT, 1986]

Limitations

Does not cover many visualization techniques

- Networks, maps, diagrams
- Also, 3D, animation, illustration, ...

Does not consider interaction
Does noł consider semantics or conventions
Assumes single visualization as outpuł

Summary

Formal specification

- Data model: relational data, $\mathrm{N}, \mathrm{O}, \mathrm{Q}$ types
- Image model: marks, attributes, encodings
- Encodings mapping data to image

Choose expressive and effective encodings

- Rule-based test of expressiveness
- Perceptual effectiveness rankings

Announcements

Announcements

Class participation requirements
Complete readings and notebooks before class
In-class discussion
Post at least 1 discussion substantive comment/question per week. 1 pass for the quarter

Class website
https://magrawala.github.io/cs448b-wi20

A2: Exploratory Data Analysis

Use Tableau to formulate $\&$ answer questions
First steps
Step 1: Pick domain \& data Step 2: Pose questions
Step 3: Profile data
Iterate as needed
Create visualizations
Interact with data
Refine questions

Author a report

Screenshots of most insightful views (10+)
Include titles and captions for each view
Due before class on Jan 27, 2020

A1 Review

Design Considerations

Guides: Tiłle, labels, legend, captions, source!

Expressiveness and Effectiveness

Express the facts and only the facts
Avoid unexpressive marks (lines? gradients?)
Use perceptually effective encodings that match data type
Don't distract: faint gridlines, pastel highlights/fills
The "elimination diet" approach - start minimal

Support comparison and pattern perception

Between elements, to a reference line, or to counts
Use reader-friendly units and labels

26

Design Considerations

Group / sort data by meaningful dimensions
Transform data (e.g., filter, log, normalize)
Are model choices (regression lines) appropriate?

Reduce cognitive overhead

Minimize visual search, minimize ambiguity
Appropriate size, aspect ratio, legible text
Avoid legend lookups if direct labeling works
Avoid color mappings with indiscernible colors

Be consistent! Visual inferences should consistently support data inferences

Stacked bar charts
 (most common)

29

31

Stacked bar charts for percentages

33

Grouped bar charts

Line charts

Q: How has the popularity of the computer science coterm grown over time compared to other coterm programs at Stanford?

Additional Data and Transformations

41

Small Multiples

45

Sankey diagrams

47

Multiple Encodings

49

51

